A method for identifying discriminative isoform-specific peptides for clinical proteomics application

Academic Article

Abstract

  • © 2016 The Author(s). Background: Clinical proteomics application aims at solving a specific clinical problem within the context of a clinical study. It has been growing rapidly in the field of biomarker discovery, especially in the area of cancer diagnostics. Until recently, protein isoform has not been viewed as a new class of early diagnostic biomarkers for clinical proteomics. A protein isoform is one of different forms of the same protein. Different forms of a protein may be produced from single-nucleotide polymorphisms (SNPs), alternative splicing, or post-translational modifications (PTMs). Previous studies have shown that protein isoforms play critical roles in tumorigenesis, disease diagnosis, and prognosis. Identifying and characterizing protein isoforms are essential to the study of molecular mechanisms and early detection of complex diseases such as breast cancer. However, there are limitations with traditional methods such as EST sequencing, Microarray profiling (exon array, Exon-exon junction array), mRNA next-generation sequencing used for protein isoform determination: 1) not in the protein level, 2) no connectivity about connection of nonadjacent exons, 3) no SNPs and PTMs, and 4) low reproducibility. Moreover, there exist the computational challenges of clinical proteomics studies: 1) low sensitivity of instruments, 2) high data noise, and 3) high variability and low repeatability, although recent advances in clinical proteomics technology, LC-MS/MS proteomics, have been used to identify candidate molecular biomarkers in diverse range of samples, including cells, tissues, serum/plasma, and other types of body fluids. Results: Therefore, in the paper, we presented a peptidomics method for identifying cancer-related and isoform-specific peptide for clinical proteomics application from LC-MS/MS. First, we built a Peptidomic Database of Human Protein Isoforms, then created a peptidomics approach to perform large-scale screen of breast cancer-associated alternative splicing isoform markers in clinical proteomics, and lastly performed four kinds of validations: biological validation (explainable index), exon array, statistical validation of independent samples, and extensive pathway analysis. Conclusions: Our results showed that alternative splicing isoform makers can act as independent markers of breast cancer and that the method for identifying cancer-specific protein isoform biomarkers from clinical proteomics application is an effective one for increasing the number of identified alternative splicing isoform markers in clinical proteomics.
  • Published In

  • BMC Genomics  Journal
  • Digital Object Identifier (doi)

    Author List

  • Zhang F; Chen JY
  • Volume

  • 17